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- THE STABILITY OF ORTHOTROPIC ELLIPTIC CYLINDERS
IN PURE BENDING*

By 0. S. Heck

The theoretical critical bending stress of elliptic
cylindrical shells ig determined on the assumption of in-
finite shell length and absence of local instability phe-
nomenas The results of tests on isotropic elliptic cylin-
drical shells stressed in bending are compared with the
theoretical results. The practical applicability of the
theory is discussed.

I, INTRODUCTION

The preliminary calculation of the load capacity of a
thin-walled cylindrical shell under bending stress is of
importance in airplane statics in the analysis of shell
bodies. Hereby it does not merely pertain to isotropic
circular cylindrical shells which, in the literature up to
now, are almost exclusively used in bending tests, but also,
above a2ll, to the bending of orthotropic (orthogonally ani-
sotropic** and stiffened cylindrical shells. The study of
shells with other than circular sections (elliptiec, for ex-
ample) is of particular practical importance.

General application of Navier!s simple bending theory
to thin-~walled beams is no longer permissible, according
to Prandtl, because of the occasionally cnormous strain of
the scetion under load. On the strength of this, and
prompted by experiments on elastic balance tubes, von
Kdrmdn investigated tho bending of curved thin-walled
pipes (reference 1). But his findings are inapplicable to
straight pvipes. Besides, von Xdrmdn failed to mention the
important fact that the bending moment has a maximum (crit-

o

*"Uber die Stabilitat orthotroper elliptischer Zylinder-
schalen bel reiner Biegung." Luftfahrtforschung, vol,
14, no. 3, March 20, 1937, pp. 137-147.

**The concept of orthogonally anisotropic plate was proba-
bly first given by M. T, EHuber (c¢f. Bauing., vol. 4,
1925, De 354:.
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ical) wvalue conditioned by the flattening of the cross
scction,.

The first study on the pure bending of infinitely
long isotropic circular cylindrical shells, was mads by
Bragzier (reference 2). He shows that the bending moment
does not increase linearly with the curvature of the shell
axis and that it assumes a maximum (critical) value for a
certain curvature of the shell axis; for greater curvature
the system ceases to be stable,

This type of instability (similar instadbility pre-
vails under compression and bending of a bar) is essen-
tially different from that encountered in the usual sta-
bility wnroblems, such as in the buckling of a straight
bar, for example. -

Figure 1 shows the behavior of a straight compres-
sion member., The load P runs linear to the approach £
of the bar ends as far as the branching-off point (buck-
ling load)e From that point on, there are two possible
conditions of equilibrium: the bar may remain straight -
that is, in unstable equilibrium, or deflect sideways un-
der stable equilibrium. In both cases the load P in-

creases beyond the buckling load.,

Brazier's discussion of bending of a cylindrical shell
is illustrated in figure 2. The curve which gives the
bending moment 3B relative to the curvature K of the
shell axis, has no branching-~off point, The bending moment
cannot be increased beyond the critical value 3Bxr. After
the critical condition is exceeded there remaing only one
possible equilibrium condition of the shell, and that is:
unstable.

Figure 3 finally shows the behavior of a cylindrical
shell in bending when accompanied by local buckles which
belong to the instability phenomena of the usual type.

The maximum load supported by the shell is more or less
reduced by the bucklesy; hence Brazier'!s value obtained by
disregarding a local buckling, constitutes a theoretical
upper limit of the maximum load in an infinitely long
shell,

II. FORMULATION OF PROBLEMS AND ASSUMPTIONS

In the present report the behavior of orthotropic
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cylindrical shells of elliptic section in pure bending is
- theoretically investigated.. COritical bending moment,

eritical bending stress, and deformation of shell sectlon
are determined. The principal assumptions are as follows:

Lle The cylindrical shell is of infinite length,

2e There are no local instabllity phenomena (i,ee,
no wrinkling).

%5« The stresses remain below the proportional 1limit
of the material.

The value of our findings for practical application,
if premises 1 and 2 are not met, 1g discussed in the next
section., Whether assumption 3 is fulfilled can always be
verificd.

The local instability of long shells can be investi-
gated when allowance for the gstrain condition -« i.e,, the
change in curvature radius of the shell section and of the
digstaonces from the gzero line - is made in accordance with
the considerations of the present report. An approximate
study of local instability has been made by Brazier for
the casc of isotropic circular cylindrical shell, But theo
local instability is so seriously affected by inevitable
preliminary wrinkling that theoretical studies which do
not allow for these preliminary wrinkles, are of limited
practical importance only.

III. RESULTS AXWD SCOPE OF VALIDITY

The critical beonding moment By, of an orthotropic

cylindrical shell of elliptic section stressed in bending
in thc major or minor axis of the section is on the assump-
tions cited in the preceding secction:

Byp = W Oy - (1)

. B . R o .
Trr = © — . /5 (2)
1 - v%p Sm

with

Hereby
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is the modulus of elasticity of the material
Poissonl!s ratioc (about 0.3 for steel and duralumin)
wall thickness of shell

mean wall thickness, which goyerns the stiffness of
the shell to axial stresses (in the case of the shell

. with closely spaced stringers, which approximately

resembles an orthotropic shell, it is: s8p =.s +
%, where F = total section of stringers, and u =
circumference of section of mean shell surface)¥*

major and minor half axis of the shell section

radius of curvature of undeformed shell section at
the point of stress peak (pg = a?/b under bending

on the major sectional axis Pr = ba/a by bending on

‘the minor sectional axis)

section modulus of undeformed cross section of the
elliptic eylinder

(wg = E b (b + 3a) sp

referred to major scetional axis

Wk=-ga(a,+ 3b) Sm
referred to minor sectional axis)

critical bending stress (0, is simply a fictitious

stress, because W refers to the undeformed cross
section of the shell)

a numerical value which depends on axes ratio a/b

. 2 a?_~ b2
of the shell gection or the value k = Femgrm - and

may be obtained from figure 4.

The subscripts g and k indicate, respectively, the
bending about the major and minor cross—-sectional axes.

*Uniform stringer distribution being assumed.
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For a shell having unlike moduli of elasticity in lon-
gitudinal and..circumferential. directions, the eritical
bending stress is: -

EIEQ S
Oxr = C / -i-—:——l-’-z-'; - (3)

where E, = modulus of elasticity in circumferential, and
E, in longltudinal, direction of the shell.

The "real" critical bending stress orr! (in contra-
distinction to the "filectitious" critical stress gpp,) must

not - if the findings of this study are to retain their
validity — exceed the proportional limit of the material.
To decide whether this-condition is fulfilled, compute
Okr'! according to (2) or (3) whereby cy! and cx! ob-
tairable from figure 5, replace Cg and Cg.

The extent of the cross—~sectional strain may be seen
from figures 6 and 7, where the relative 1length changes
in the axes of the shell section, on reaching the critical
condition, are plotted,* '

In the calculation of the quantities plotted in fig=

ures 4 to 7, the squares and products of the displacement

components of the shell element in their crossesectional
plane were disregarded relative to the first powers of
these values, as in Bragzier'!s study. To gain an idea of
the effect of this omission, we made a more accurate cale
culation for k2 = 0 and k2 = 0,3, the rosults of which
are also included in figures 4 to 7. But cven these vale
ues are not absolutely correct, since therc are still
other influences which are not considered in the calcula-
tion. 1In the calculation of the curvature change of the
shell section, for example, the displacement components
of the shell elements in the cross-sectional plane are .
considered as small; i.e., higher powers of these values
are neglected relative to the first powers. Further, it
was assumed that the strain in the shell section consisgsts.

.solely in a deflection, but not in a length change of the

line elements of the shell section., The more exact calcu-
latlion gives greater values for opp, 80 that the appli-

*w  is the shiftlng of a cross-=gectional point at right
angles to the circumference (positive inward). The expla-
nation for w, and wn/2 will be found in figures 12
and 13, ’




6 NeAoeCoA. Technical Memorandum No. 834

cation of the results of the simple calculation legves
onc on the safe side. ZExperimental verification of the
thecory seems, in the face of these facts, absolutely nec=-
088ary.

In the following, the extent of the practical applica-
tion of equations (1) to (3) to cases where assumptions
(1) and (2) are fulfilled, is discussed,

a) Isotropic shellg.- In igsotropic shells, even if
of great length, the beginning of the instability through
collapse of the shell walls toward the neutral axis, is
initiated by a local wrinkling on the compression half of
the cylinder, as a result of which the failing load of the
shell is reduced. Numerous experiments on isotropic cir-
cular, cylindrical shells (cf. figs. 17 to 19) have shown
that the average maximum bending moment supported by the
shells is not very much different from the theoretical
value for the infinitely long shell without consideration
to local instability phenomena.

The average value of ¢ of 77 tests is Caverage -

0e357. But the scatter of the experimental values is in
part quite considerable. From the available test data
there is no indication of any effect of shell length (fig.
19).

For the purpose of checking the applicability of the
theoretical values arrived at with the assumptions out-
lined in section II, for elliptiec cylindrical shells of
finite length, we made several experiments with isotropie
elliptic cylindrical shells of varying axes ratios, The
tests disclose through the theoretical values computed
with the coefficients ¢, and ecx a good agreement for

bending about the major cross-sectional axis, but markedly
lower experimental values for bending about the minor
cross-sectional axis., (Cf. section IV and fig. 4.)

In the latter case, it means that local wrinkling of
the shell wall results in a material reduction of failing
load of the shell, contrary to the experiences with circu-
lar cylindrical and elliptic cylindrical shells in bend-
ing about the major cross—sectional axis. A certain ex-
planation for this fact may be found when assuming that
the failure then occurs in the event that the axial stress
g in the shell reaches at some point of the cross section
the critical value gyp of equation (2). This most un-
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favorably stressed point follows from the condition that
- the product—of .curvature radius. of shell section and the
distance from the neutral zone must become a maximum,
Wbhen disregarding the strain of the shell section this
voint is given by

- 1 2
t = ———— . Y 2
arc sin o (k > 0.25)

Then the critical bending moment can be computed from the
foramulas (1), (2), and (3), is at k% > 0.25 instead of
¢ the coefficient :
. , _ a/a
T =~ 1 (1 - k) e
3%

is substituted. At k° € 0,25 the extreme fiber on the

compression half of the shell is most gdversely stressed.
Figure 4 shows ¢, plotted against k%, The agreement

with the experimental values is comparatively good.

b) Orthotropic shellg.- While the local bulging of
the walls of a shell with lengthwise closely spaced stiff-
eners, which approximately resembles an orthotropic shell,
is denendent on the bending stiffness of these stiffeners,
the failurce due to collapse of the shell walls is depend-
ent on its cross section. There is no local bulging of
shell walls before failure in very long elliptic shells
with closely spaced stringers for sufficiently high bend-
ing ctiffness and small cross section. In that case the
results of the present report are exactly valid.

As concerns the applicability of the theoretical for-
mula and the effeet of shell length in orthotropic ellip-
tic shells (plywood shells, for instance), no experiments
are available., For computing the failing moment of short
stiffened shells with strong fairly closely spaced frames,
the results of this study are inapplicable as the re-
strained flattening of the shell section increases the
failing load of such shells as a rule very considerably
compared to the failing load of very long shells withoutl
frames.* If the strain of the section of such a shell is

*The theoretical formula (2) is also useful for calculat-
ing the closed part of a shell body with comparatively
closely svaced intermediate bulkheads, since it indicates
the critical bending stresses for the collapse of the shell
walls in duckling form; that is, a lower 1limit in shells of
(Continued at bottom of page 8)
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negligibly emall, then the study of the local stability of
the assumedly orthotropic shell is comparatively simple as
against the general case, because the bending moment up to
stability limit runs lincar with the curvature of the shell
axise As regards the bulging of the walls of orthotropic
shells, a better agreement between theory and test seems
indicated than with isotropic shells, since the inevitable
preliminary bulges are smaller in comparison with the mean
wall thickness.

IV, EXPERIMENTS WITH ISOTROPIC ELLIPTIC CYLINDERS

A series of failing tests in pure bending about the
major and minor cross—-gsectional axes was carried out on
isotropic elliptic cylindrical shells of duralumin of two
~different axes! ratios. The dimensions of the test speci-
meng are given in tadble I. (1 is the free length of the
eylindrical shell,) The modulus of elasticity of the ma-
terial was established at E = 7.5 x 10° kgem~2. The
evaluation of the tests was made with with v = 0.3
Poissonl?s ratio. The experimental arrangement itself is
illustrated in figure 8. The wooden frames at the ends of
the test cylinder serve to press the sheet against them
through exactly fitting wooden jigs. One enl frame is
clamped to a solid frame wvhile =z pure bending moment is
apvplied at the other frame. The weight of this frame is
compensated. Two failing tests could be made on each
specimen, After the first test the cylinder was turned
through 180° on its axis, which left the still undamaged
part of the specimen on the compression half of the cylin-
der for the second test.

TABLE I. Dimensions of Test Specimens

) a b 1 ]
Specimen -
.cn cm cm ¢m
1 22.5 15 78 0.060
L 2 30 15 127 .08 i}

*(Continued from footnote, page 7)

of finite length, which are bounded by fixed ribs. Logic~
ally, the thickness of a smooth sheet must thereby be writ-
ten for s in (2), whose bending stiffness equals the mean
bending stiffness of the stiffened shell in circumferential
direction under consideration of the frames. One obtains
in this manner a control point for the rib dimensions.
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The results of the failing tests aré given in table.
II. "For comparison with the theoretical values (admitted-
ly derived for infinitely: long cylindrical shell and dis~
regarded local instability phenomena), we have included
the experimental wvalues of ¢ and cyp in figure 4, A

discussion of the test data is given in the preceding
section, :

TABLE II, Test Data

Bending about major Bending about minor
cross-=sectional axis ¢ross~sectional axis
Spec=| p W. |B o c o, |W. |B o c
inen & e Exr Skr & k| 'K kkr Kpr .k
cm | cm® |cmkg |kgcm~2| - cm|cm3 'cmkg kgem=2 | -
1 33,75 48.51 19600 405 | . 347 10{59.6}42500} 713 .181
’ 21200 437 | 375 ) . 47300 794 e 202
2 60 |63.1{17350| 275 |.,411]7.5({90.1{53700 595 |.111
18900 .2&8 .401 52220 580 .108

V. THEORETICAL ANALYSIS

l, Formulation of Problem as Variation Problem

To analyze the behavior of a circular or elliptie cyl=-
indrical shell in pure bending. we.resort to the principle
of minimum potential energy. The assumption of infinite
shell length neutralizes eventual edge effects. Conforma-
ble to another assumption, there is to be no local bulging
of shell walls Then all sections of the shell are strained
in the same fashlon for reasons of symmetry, -so that the
analysisg can be restricted to a piece of shell of length 1.

For a given curvature K of the shell axis, the form
which the shell section assumes must be so defined that by
fixed K the energy of form change U becomes a minimum.
So if the strain of the shell section and consequently,
the energy of form change U is known in relation to cur-
- -vature Kk, ' the bending moment B follows as derivative

"of U with respect to K. :
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The form change energy U comprises:!

1) The form change energy U;, corresponding to the
strain of the shell section.

2) The form change energy Uy , corresponding to the
length changes of the shell fibers.

The strain of the shell section is assumed to consist
only in a deflection bdbut not in a length change of the line~
ear elemecnts of the section of the middle of the shell,

It is assumed that both strains corresponding to the energy
of form changes U; and U, take place successively, for
example =~ first the strain of the shell section and then
the elongations or contractions in shell-length direction.
The additional strain of the shell section following the
initigtion of the axial stresses as a result of transverse
contraction, is small enough to be negligible.

It is then:

E g3
U, = 2 J 4
172 12 (1 - pB) 1 (4)
Us = 2 sy k% T, (5)
with
I, = ¢ (& ky)® du (6)
J, = ¢ 1% au (7)

whereby the integrals extend over the whole circumference
of the shell section. It is:

K, curvature of the shell axis

AKy, change in curvature of the section of the median
shell area '

u, arc length of the section of the median shell area

h, distance of an element of the strained shell from
: the neutral axis

Assume the strain of the shell section to be defined
by the natural coordinates v and w of the displacement
of thec shell elements in the scctional plane: v, to denote
the component of displacement in tangential direction (pos-



N.A,C.A., Technical Memorandum No, 834 11

itive in the sense of increasing u) and w, the component
in normal ‘direction (the inside normal._to be positive) of
the undeformed section. The curvature change A k, of

the shell section, which may be any, so long as it has no
corners, can be expressed with Frenett's formulas through
the displacement components v, w, and their derivatives.
We have: -

w t
AKu=Eg+w"—VS§' (8)

Here p 1is the radius of curvature of the shell section
(positive if the center of curvature lies on the inside
normal), p?' the first derivative of p with respect to
arc length wu, and w" +the second derivative of w with
respect to u. If, as according to our premise, the length
of the linear elements of the section is constant, then
there exists between v and w, the relation:

w=p v (9)

. With due regard to (9), equation (8) becomes:
1 p!
A Ky = p VI o+ ep !t " + (p" 4+ _> v! - v 1 (10)
P p

It will be observed that in (8) to (10) the higher
powers of v and w and their derivatives are disregard-
ed relative to the first powers of these quantities, as a
result of which the validity of these formulas is confined
to relatively small v and w.

The problem now is to so define v and w that for
given curvature Kk of the shell axis the energy of form
change U asgumes a minimum value; i.e., to solve the
variation problem:

Us=1U, + Uy = Min (11)
2. The Orthotropic Circular Cylinder Under Pure Bending

We first analyze the pure bending of the infinitely
long orthotropic circular cylinder on the premises of
section II, and solve the previously derived variation
problem for this particular case. The curvature change
AKky of the shell section becomes:

A Ky =T v E fl (12)
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according to eqﬁation (L0), with r equal to radius of
median shell area. The distance h of one element of the
strained shell from the neutral axis is:

h =71 cos t = v sin t - w cos t (13)

whereby w 1s to be replaced according to (9); the sige
nificance of t is seen from figure 12. The variation
problem (11), for which the solution could equally well be
arrived by integration of the correlated Eulerian differ-
entlal equation, is solved directly by the formula (Ritz'!s
method):
n

v=r L Aj sin 2 j ¢t (14)
J=1
No terms other than those given can appear in the formula
for v for reasons of symmetry. With (14) and allowance
for (12), (13), and (9), equations (6) and (7) give:

n

_ 4m .2 .2 8 , .2
g o= jél j (43 -1) Aj : (15)
Jg =1 r3® (1 - 3 A,) (16)

In the determination of J, the squares and prod-
ucts of v and w are neglected relative to the first
powers of these values. The conditions for minimum energy
of form change U are the n equations:

QD:.-:O (j:l, sees, Il)

BAj
or
g_iT_L = - E?_g 895 _ (17)
Aj T aAJ
with 2 4 a
: s. kZ r? (1 - v3)
N =-3 ( (18)

With (15) equation (17) becomes:

B .o -1 2 — 2__ 2
= J° (43° - 1) A5 = - LE -

From these equations, the quantities Aj can be computed:

'A'l =g, .A.J' = O (j = 2, 20 vy n)
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Eereby n may be of arbitrary size; that is,

v = g r sin 2%

is the exact solution of the variation problem (11), The
bending moment B TDbecomes:

= 4U _ U _ ¢ = 3 ( - 3 ) 19
B = % 5a = Esykdg =mE spk v (1=~2N (19)

The bending moment reaches its maximum value By, 1if
equation

a8 _ 3B , 3B a¥ . 20
K T ak = © (20)

is fulfilled. Equation (20) gives: N = %.

By observing (18), we have:

By, = C e E s /s sy . (21)

¢ = =55 = 0.987
Putting Bry = W Oy
whereby W=mrd sy
we finds
Onyp = € —Z s /= (22)

but Oy 1is only a fictitious stress since W 1ig the sec—
tion modulusg of the unstrained circular. section.

Allowing for the squares and products of v and w,
disregarded in equation (16), we have!
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J, =7 r® (1 - 34A,)+§ (vsin t + w cos £)2 as
5
=1 1'3 (1 and S'A'l + -sé' Ala + "‘2- Al Aa_
+ L7 4B 4 45 4. a, + 2T 22 4 ...) (23)
e 2 2
Then the equations (17) read, for n = 3, for example:
5 5 3 x )
3 + (2 + 2 =< N
b+ (Baasd Aa) N s
300 Ag + (% A+ AT a4 £ A3> N=0 & (24)
- /45 37 )
a5 + Z2 4 =L I = 0
3675 .A._3 (\4 A.a ) A.3 X J

from which A1 to Az (up to A, in general) can be ob-
tainede The bending moment

du oU
= 22 = EX = & K Jd, 25
ar ok *m 2 (25)

reaches a maximum value if

aB B dN 1o 3B dAj
S22, 8 5 2B (26)
dw 3K dx j=1 0Aj 4N

This equation gives XN and, by observing (18), (23),
and (25), the eritical bending moment. It again yields
the equations (21) and (22) for By, and Oy, bdut with

different coefficients ¢ and c. It is:
C = 1.22 and. c = 00388

which values are, 2s stated before, still not completely
correct,

On reaching the eritical condition (fig. 12) the rel-
ative shortening in diameter of the shell section perpen-
diculgr to the neutral axis is:

Jo - x =2 (27)
r 9

if the squares and products of v and w are neglected
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in (7). The relative lengthening of the diameter coinci~
dent with 'the neutral axis is - of . the same magnitude. If
the squares and products of v and w in J; are con=

sidered, then the relative shortening of the diameter per-
pendicular to the neutral axis amounts to

Wo L
- =2 I JA.

5, 3 (28)

and the relative lengtheniﬁg of the diameter coincident
with the neutral axis

. ‘n )
- Eglé =2 jg (-1)9*%1 5 A5 (29)

Here the values Aj should bo detcrmined from (17) and W
from (26). The valucs wo/r and - -ﬂ/z/r together with

the correclatced valucs of shells with elliptic section arc
shown in figurce 6 and 7.

The actual critical bending streoss opp,! (in contrast
to the fictitious bending stress op,) Dbecomes:
0'1 | B p—_—_ L
Y w?

Thereby the critical bending moment is, according to (19):

BkI':ESmK'Ja

and the scetion modulus of the deformed shell section (re-
ferred to the neutral axis):

Ja Sp
W = e
T = Wy
Obscrvance of (18) gives:
_ ot B 8. s
kr T T— S -
~/1 - 2 T Sm

If the squares and products of v and w 1in eguation
(7) arc neglected, it affords with equation (27):

et = (1 - N) /W
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Allowance for the squares and products of v and w, and
observance of (28) gives:
n

| S - i A
et = (1 2 jgl J Aj) /N
The values computed for ¢! are plotted in figure 5.
3« Pure Bending of the Orthotropic Elliptic Cylinder

In the following we solve the variation problem (11)
for a cylindrical shell of elliptic section. The gtudy is
confined to the symmetrical cases of bending adbout the ma-
jor or minor axis of the shell section. A rectangular sys-~
tem of coordinates in the plane of the shell section makes
the x—axis coincident with the major, and the y-axis coin=-
cident with the minor, cross-sectional axis (fig. 13),

Then the equation of the section of the median shell area =
expressed in parameters— reads:

a sin ¢

fl

X

b cos ¢

y

wvhere a is the major, and b the minor, half axis of
the cross—sectional ellipse. Conformable to (6) and (10),

we have:

2
1 !
J, = ¢ [p v'''+ 2pt ¢V <p" + —)v’ - v Bg] du (30)
P P 4
whereby
1 2 . p2
du = a (1 - k% sin? t)*7° at, k° = a3
_a o 12 a3n2 33372 SR - A
p =32 (1 k sin® t) a, p' = 5 3 k% sin 2t
pU = - 3 2 k2 ces 2t (1 - k2 sin® t)" 72 ﬁ

It hg is the distance of a shell element from the

neutral axis in bending about the major cross—~sectional
axis, and hy, the corresponding distance in bending about

the minor axis, we have (cf. fig. 13):

h b cos t = w cos @ - v sin @ (31)

g-':

hy = a2 sin t - w sin @ + v cos ® (32)

e |
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Here ¢ 1is the angle of the normal with the minor axis
of,the_ellipse._ult_isj ' o 7 R

{

sin @ = -3 sin t (1 - k° sin® $)~'7/3

cos @ = cos t (1 - k° gin® t)"l/2

According to eqﬁation (?7) the observance of (31) and
(32) in bending about the major cross-—sectional axis (de-
noted hereafter by subscript g) gives:

.J'al-=,¢"('bg cos® t-2b w cos t cos ® =2b v cos t sin ®)du
& | (33)

and by bending about the minor c¢rossesectional axis
(subscript X):

Ja_=¢ (a® sin® t-2a w sin t sin@+2a v sin t cos @)du
. (32)

The squares and products of v and w are neglected
against the first powers of these values; p v! can be
substituted for w according to (9). -

The variation problem (11) can be solved by the Ritz
method, The function v can be approximated by

n
v=a .2 A sin 2j t (35)
j=1

For reasons of symmetry, no terms other than those
given can occur in the formulg for v. With formula (35),

equation (30) becomes, after several intermediate compu~
tations:

' . _n/2 n .
I = -(,z As K-) at (36 )
0

with
Ks = {25 cos 2 t [=45%+(a+B sin® t+Y sin% t)

—~1
a t)

(1-k® sin® t) °] + e sin 2t sin 2§ t(1-k® sin
[43% + £ (1-k® gin?® t)’aj} (1-k2 sin2 t)*7*

where for abbreviation:
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1 - 3%% =a, 4k® =8, ~2k* =¥

K2 = ¢, 1k = ¢

ol

The term for J, given in (36) is valid in bending
about the major, as about the minor, axis of the shell
section. The evaluation of the integral in (36) by series
development being very tedious, the numerical integration
is carried out by the Gauss-Lobatto method (reference 8),
The integral is approximately replaced by a sum of =n
termsos The summands are the values multiplied by certain
weights ¢ of the to-be integrated function at the inter-
val stops and at m - 2 prescribed points of the interval.
The thus-~obtained approximatiocon is of the order of 2m - 1;
iecse, a parabola of the 2m - 1 degree is exactly inte-
grated by this method. Then equation (36) becomes:

2T m

n 2
J. = e — z (Z As Ks > 37
1 a (1 - k%) p=2 p =1 7J TJp (57)

The integrals Jag and  Jz,, conformable to equations
(33) and (34) can be exactly defined, 1l.6e:

2\ 3 = k2 k2
J2g = 21 a3 [(1—k )R~"~§—~— A, - Yy Aa] (38)
2
Ja, = 2m &b [s+§—= Sk o+ & Ae] (39)
Wlth 1T/2

_ 2 .2 2 2 1 _ 1 <_ 2
R = = //‘ (1-k® gin® t) cog® t dt = 5 z \3 k
L
)

.1 (;;_32 4.1 (_1__-_3_-_§)2 kS _ .
6 24 3 8 \2+4-+6 5

n/2 o
_2 /[ 2 a2 172 . 2 _ 1 3(;) 2
S = - J/ (1 k sin t) ein t 4%t = > - 2 5 k
2
° -.@(1-.@ k2 _ 7 ;;3-5)2 x® _ .
6 24 3 8 2e4e5 5

With (35) the energy of form change U. becomes =a
function of the =n variables Aj (5 =1, ease, n), and

so variation problem (11) reduces to a common "extremum"
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problems The accuracy of the method can be raised at will
- ~ by increasing  n. But, in general, it affords no possibil-
ity to assess the errors. The values Aj, for which U

becomes a minimum by constant Kk, follow from the =n 1lin-
ear equations: :

oU

P O j = l s ® 00
BAJ (3 : n)
or
odi 12 W ada
oh _ | = ¥ o (40)
BAJ a4 aAj
with
2 .4 2
s_ RS a 1 - v%)
Y = —-m ( (41)
s3
From equation (37) follows:
9d; A1 o

m
= _Z Ay X Ks: Ks
345 a (1 - k%) i=1 *psi Op (%3 1)p

Then theo equations (40) with observance of (38) and
(39) become, in beniing about the major cross-sectional

axis:
n m - .
iél Ay _El €p (Ky Ki)p =3 (1 - k%) (3 ~-~k") N
igl & “gl gp (Ko Kj)p = 3k (1 - k%) N ( fa2)
n m
(2, M2 e (K5 Ki)p =0 (3 = 8, weerm)]

1 g2

n m . 2 7 2 ]
2 A p§1 gp (K, Kilp = =3 (1=~ k%) (3-2k®) N
3 el = - a - e ! 43
(Z A1 Ty (Ko Ky)p = =BK® (1 - k®) W ( (43)
S Ay Ks X o {3 3 )

. s K- = C =D, s,
12, A1z ep (By Kilp J s

Having defined the values 4; from (42) and (43), the bend—
ing moment B follows from
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3 = &

= g% =% Sm K Ja (44)

=

with Jg as given in (38) and (29). The bending moment

B reaches its highest (critical) value By,., if
aB B 4N /3B o dA
4B _ 9B, 4N (o3 a4, a> = 0 (45)
dk ~ OK dK \34, 4N 3k, AN
From these eguations follow:
_ 2 (1 ~k3 R
g - A A
2 1 2 4fa
3[(3-k)-ﬁ-—+kN]
- - 25
k=
A Ao
31 (3 - 2x®) =1 4 ® 22
[( 2k <) X k N ]
whereby in the expression for Ng the values A; and Ap

are to be taken from (42) and in the term for Np from
(43).

By observing (38), (39), and (41), equation (44) gives:

Bypr = C —2E 4 s /s Sm (46)
1 - v°
with
=
4 6 (1L - k R
G, = —m (1L - k2) R ( i ) i
S 2 b 2 <2
(B—k)—“N'-'Fk Y
4 -
e = — 1 S / 65
= g / 1 a2 Az

Defining a fictitious critical bending stress Oy,
with
Ber = W Opy
wheredby

w =

g a (a + 3b) sy

>

b (b+ 3a) sy, W =3
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are the section moduli of the shell °ection'with respect
to the maaor and minor croos—sectlonal axes, we find:

Oy = € ———2m—— 2 [ 2. (47)
Jl-vap m
with
16 R v// 6 (1 - k%) R
(o] = - -
g 9 5 A A
_ 3+l - K2 (3 = ka).ﬁl4_k2 35
2
16 (1 - k%) s : - 6S
Ckx = o
9 A 2 A
1+ 3/1 -k - 2y &1 22
J' (3 2k*®) T kT 5

Figures 14 to 16 show the values Cgy and O and

éL plotted against k2 and n. A proof of the converg-
k

ence of the method is withheld in the present report.
Even so, the diagrams manifest the good convergence for
small k2%, while for higher k2, it is less good. But

even in this range the curves toward which the values Cg

and é% strive, can be plotted with sufficient accuracy.
e

Figure 4 shows the values and ¢ plotted against k

g

Observance of the squares of products of v and w,
disregarded in (33) and (34), reveals the right-hand sides
of equations (38) and (39) augmented by the terms:

2t o
) 2 a® n
$(w cos® + v sin ©)° du = -]::l—c-g/ Jél Aj LJ) dat (48)
and 0
;2n
2

g (w sin @ ~ v cos ®) du = a3 j/’ ( s As M ) at (49)
Heredby °

o R |
L = 25 (1-k2 sin® $)° %cos t cos 2j +

—-1/4 . .
+ (1-k?) (1-k2 sin® %) sin t sin 23 ¢

a2
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a , 2 3/4
My = 2] (1-k" sin” t) sin t cos 23 ¢

~1/4
(1=k® sin® ) cos t sin 25 t

Evaluating the integrals in (48) and (49), conforma—
ble to Gauss~Lobatto, the equations (38) and (39) are re-
placed by

2 2
Jg, = 20 a® [(l—kz) R - §_§_E_ Ay - %r Aa
1 m n 2
+ —— Z (Z A. L. > ] (50)
1 = K% pm1 OP \32, 79 My
J = 2w a° (S + 3= 2k% 40 4 K2,
®x
L
n 2
+ g ( Z A M J (51)

In bending about the major cross—sectional axis, the
equations defining A; are:

dJ
n m -
jél Ai p§1 gp (Kl Ki)P
n m a 3
- - - - . M
+ l2 ¥ 151 Az Dgl &p (LlLl)P Z(1=k") (3=k") N
n m
As .
iél 1 pél gP (Ka Kl)p
. ) r o (52)
+12 0 % A 2 &p (Lali)y =3k (l=k~) W
n m
. . <)
i§1 A pgl Ep (KJ Kl/P
n m
2 s « T3 - $ et .

and for bending about the minor cross~sectional axis:
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n m
Z Ay PEI,gp (B Kydp L | ]

12 (1l=Xk?; 3 3 )
+ 12 (1-k®) ¥ I Ay iy Ep (M1M3 ),
= = 3 (l=k®) (3=-2x%) N

n .

m
Y
igl Al s=1 gp (Ké Ki)P

o

n m
+ 12 (1-k®) ¥ 2 A1 I gp (MaMi)p (53)
i=1 p=1

= = 3x2 (1=-k3) N

n m
oA Zoep (K5 Kidp
= 0= g

2 n - m > —
¥ la (1-1°) W 2 A T g (M5Mi), = O

(j:S, ...,n)J

The bending moment B follows from equation (44),
whereby Jp is given in (50) and (51). The value of K
or ¥, for which B reaches the critical value Byr, 1is
computed from the equation:

aB 3B _an 3 23 %4

dk 3k dk J=1 dAj aN

or
2 2 2 2 o n Y
2 (1= R - (3= - Fap— p) ( % AsLg )
(1=k%) R—(3-k") Ay - k™ 4, T-k2 p=r OP \j=1 “97Jp
dAl 2 dAa
2y =2 ainl. A
- 2N [(Z-k ) 3tk 3W
8K n n m da
¢+ 2, S T A, = =2 = 0 (54)

LsLs
1 k& i=1 j:l J P:l gP ( i J)P dN

for bending about the major axis and
) J
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28 + (3~=2k%) Ay + k% As + 2 ( T As Ms )
( ) 1 | ]_9§1 gp 521 J ")P

da dA
. D)2y -t a 2
+ 2N [(5 2x") -t kK am ]

n n m dAs
*EN I T A5 T oep (M3M3), g7~ = © (55)

for bending about the minor axis of the shell section.

The results for Byy and oxr are again the equa-
tions (46) and (47) but with different coefficients ¢
and c¢¢ The thus-obtained values Cg and ¢)p are in-

cluded in figure 4.

The strain in the originally elliptic section is ob-
tained from the functions v and w known after the val-
ues Aj have been determined. Assume that the relative
length changes of the half zxes of the shell section upon
reaching the critical conditions are given (fig. 13)., In
bending about the major axis of the section, the relative
contraction of the minor half axis b TDhecomes:

L 2

n
== = ———— T A; (56)
b T =
and the relative lengtheuing of the major axis a
W /2 - =z j+1
- -IOl=2 = 2/ 1 <« ¥% I (=l1) J Aj (57)
a J=1

In bending about the minor axis of the section the
relative shortening of the major half axis a Dbecomes:?

n .
Yo/ - . 2 /1 < k? j§1 (=1)9%1 5 Ajs (58)

a

and the relative lengthening of the minor half axis b is:

w - n
o = ————3 'Z j AJ' (59)
b 1 -k J=1
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If the squares. and vroducts of the displacement com-

. ponents v and w are neglected agalnst the first powers
of these values, it is necessary to write: )

2(1-1:2)3

Ng = 2 A
2
[(3 - k ) -—--- + k _ﬂ'—]
o ' - 28
Ny = - .
L A A
a 1 2 A3
3 [(3 - 2k°) 5 + k ¥ J

in the equations (56) to (59), while if these squares and
products of v and w are allowed for, .Ng and Nxr must

be determined from (54) and (55). The numerical values of
wo/b, etcs, are illustrated in figures 6 and 7 for vari-

2
ous Lk .

The actual critical bending stress oOky! . (in contrast
to the fictitious stress Oxpyr Treferred to the undeformed

section), is readily obtasinable. In bending about the ma-
Jor axis of the seetion, it is:

= K Jda
ngr E s, J“g

with

K o= E'—“_'J/ S x
a2 /1 = v2 sm ©

and the scction modulus of the strained shell section (re=-
ferred to the major axis) becomes:

Ja
w1t 2g_®m

With obscrvance of equation (56), we find:
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E s
ng 1 = cg! e
r V1 =0 pg
2 n
Ce! = [1 - =5
& - ¥ j=
Accordingly,
about thc minor cross—sectional axis is
B s s
Gk]rrr — C_C’ S, ——
N V1 - v8 py Sm
2 n
LI -] -+ - ]
Cy (1-% ") |1 2/ 1 k jél
The values of c¢g' and ecy' are

in figure 5.

NeA.C.A. Technical Memorandum No.

834

the actual critical bending stress in bending

established at:

(~1)3*F 5 ay ] Vi

shown plotted against k
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VI, APPENDIX

Results of Previous Studies

a) Theoretical.- Brazier (reference 2) treats the pure
bending of a circular cylinder of infinite length, wherein
he neglects the higher powers of the displacement compo-
nents v and w relative to the first powers of these
guantitiess He arrives at a differential equation which
must be exactly solved. Chwalla(reference 4) does not
make this omission in his analysis of the work of form
change corresponding to the tension stresses. His solu-
tion is an approximation evolved on the basis of an ellip-
tic formula for the shape of the strained section of the
circular cylinder. ©Nothing can be said about the magni-
tude of the errors. Chwalla obtains a somewhat different
numerical factor in the formula for the critical bending
moment from that given in the prescnt article -~ probably
due to the fact that he does not use as mathematical ex-
pression for the assumption of a constant arc length of
the shell section the differential equation (9), which is
only valid for small v and w. He rather defines corre-—
lated pairs of diameters of the elliptically deformed sec-
tion, so that the circumference of the cross section re-
mains constant and equal to the circumference of- the medi-
an surface of the undeformed shell, regardlcss of the mag-
nitude of the gtrain,

The principal results of Brazier and Chwalla have been
tabulated in table III.

Brazier likewise approximated the critical bending
monents at which local instability phenomena (bulging) are
imminent. Because he assumes the whole shell to be as ad~
versely stressed as the extreme fiber in the compression
zone, hisg values for the theoretical critical moment are
too lowse For this reason, and in consequence of the great
influence of preliminary wriankling through: which the mo-
ment, at which a perceptible wrinkling actually starts is,
under certain circumstances, markedly reduced, the practi-
cal value of this analysis is less great. Besides, he
uses a formula for the critical stress of an axially com-
pressed cylinder containing the factor %—i—% (Southwellls
method), which is now omitted after the works of H. Lorenz
and K. ve. Sanden (reference 9). Without this factor, the
valvuecs for the critical bending moment become slightly
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grecaters But the noteworthy fact is, that this calculation
~of- the critical -bending moment results in a formula of the
samc construction as Brazlert!s other consideration. '

b) Experimeontal data.- The available results of tests
on circular cylinders in bending are plotted against r/s
and 1/r (1 = length of cylinder) in figures 17 to 19
(references 2, 5, 6, and 7).

TARLE III. Theoretical Résiwlts by Brazier and Chwalla

According to According to
Bragzier Chwalla
7 z 2
l., Critical bending moment; By .,.=0,987 — " r s
, kr _ Vo 1wv?
(with v=043)|By,=1.035 E r s2 Bip=1e19 B r s®
2+ Pertinent curvature of ; g
shell axis (V=0,3) K=0,494 —1;% k=0.806 =&
3, Pertinent relative
shortening of diame-
ter perpendicular to | w
the neutral axis =2 = 0.222 -2 = 0.365
4, Pertinent relative
lengthening of diam-
eter coinciding with |y w
the neutral axis —%£§ = 0,222 —%ég = 0.307
5, Fictitious critical
bending stress g : g
(v=0.3) Oy = 0.329 B 2 Oy = 0.37? E L
6e Real critical bending s s
stress (vV=0.3) Okr' = 04385 E 3 Ogy' = 0.523 E

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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